

Formato para proponer cursos Semestre <u>2024-1</u>

El curso ya ha sido impartido: Sí X No
--

 Indicar modalidad: (Optativo, Seminario, curso regular (con profesor invitado) Curso regular 					
2. Título: Se sugiere que sea co Introducción a la aBioinformátic	onciso y refleje el contenido general a				
3. Tutor responsable:					
Nombre completo	LI Heladia Salgado Osorio				
Entidad académica	Programa de Genómica Computacional, Centro de Ciencias Genómicas				

6. Descripción del curso

El objetivo del curso es familiarizar al alumno con las herramientas bioinformáticas básicas más importantes y de uso más frecuente en el área: el sistema operativo Linux y los conceptos básicos de bioinformática como son las bases de datos biológicas, formatos y manejo de secuencias y genomas.

Biología

- 1. Introducción
- 2. Secuencias y genomas
 - a. Tipos de secuencias
 - b. Código Genético
 - c. Genoma (GenBank)
 - d. Formatos de secuencias (FASTA)
- 3. Bases de datos biológicas
 - a. NCBI: Genomes, Nucleotide, PubMed, etc
 - b. EMBL
 - c. DDBJ
- 4. Alineamientos de pares y múltiples secuencias
 - a. Alineamientos de pares (match, missmatch, gap, identidad, cobertura, etc)
 - b. Herramienta BLAST
- 5. Homología entre secuencias
 - a. Homólogo

- b. Ortólogo
- c. Parálogo
- d. Xenólogo
- e. Indel
- f. Especiación
- g. Duplicación

Computación

- 1. ¿Qué es el Shell?
- 2. Navegando en el sistema de archivos Linux
- 3. Trabajando con archivos y directorios
- 4. Tuberías y Filtros
- 5. Conteos y análisis con el Shell
- 6. Usando el Shell para transformar texto libre
- 7. Automatizando lo repetitivo con ciclos
- 8. Variables
- 9. Shell scripts

7. Características para la impartición del curso:					
Lugar donde se realizará	Centro de Ciencias Genómicas				
Duración en horas por sesión y número de sesiones	2 horas por sesión, 28 sesiones (miércoles y viernes de 12:00 – 14:00 hrs				
Disponibilidad de impartirlo por videoconferencia	Sí_X No Curso Presencial, pero también estará en funcionamiento el modo virtual.				
8. Método de evaluación:					
Por favor incluya en este apartado el % de la contribución relativa de:					
Participación en clase	10%				
Presentación en clase					
Proyecto de investigación	30%				
Trabajos	50%				
Otros: exámenes	10%				

10. Bibliografía

Referencias:

Referencias:

- Buffalo, V. (2015). Bioinformatics data skills: Reproducible and robust research with open source tools. " O'Reilly Media, Inc.".
- Shotts Jr, W. E. (2012). The Linux command line: a complete introduction. No Starch Press