Bistability and biofilm formation in *Bacillus subtilis*

Yunrong Chai,† Frances Chu,† Roberto Kolter‡ and Richard Losick*†
†Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, Cambridge, MA 02138, USA.
‡Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.

Summary

Biofilms of *Bacillus subtilis* consist of long chains of cells that are held together in bundles by an extracellular matrix of exopolysaccharide and the protein TasA. The exopolysaccharide is produced by enzymes encoded by the epsA-O operon and the gene encoding TasA is located in the yqxM-sipW-tasA operon. Both operons are under the control of the repressor SinR. Derepression is mediated by the antirepressor Sinl, which binds to SinR with a 1:1 stoichiometry. Paradoxically, in medium promoting derepression of the matrix operons, the overall concentration of SinR in the culture greatly exceeded that of Sinl. We show that under biofilm-promoting conditions sinl, which is under the control of the response regulator Spo0A, was expressed only in a small subpopulation of cells, whereas sinR was expressed in almost all cells. Activation of Spo0A is known to be subject to a bistable switch, and we infer that Sinl reaches levels sufficient to trigger matrix production only in the subpopulation of cells in which Spo0A is active. Additionally, evidence suggests that sinl is expressed at intermediate, but not low or high, levels of Spo0A activity, which may explain why certain nutritional conditions are more effective in promoting biofilm formation than others.

Introduction

Most bacteria are capable of forming surface-associated, architecturally complex communities of cells, which are known as biofilms (O’Toole and Kaplan, 2000; Stoodley et al., 2002; Kolter and Greenberg, 2006). Biofilms assemble on solid surfaces or as pellicles at air/liquid interfaces. A hallmark of biofilms is the presence of an extracellular matrix that holds the cells together (Branda et al., 2005). The matrix typically consists of exopolysaccharides and proteins and sometimes nucleic acid (Sutherland, 2001; Whitchurch et al., 2002). Remarkably, the mechanisms governing the production of the matrix differ markedly from bacterium to bacterium, an observation that suggests that the capacity to assemble into communities arose independently many times in the microbial world (Davies et al., 1998; Branda et al., 2005). Here we are concerned with the mechanisms governing the production of the extracellular matrix in the spore-forming bacterium *Bacillus subtilis*.

Wild strains of *B. subtilis*, such as the 3610 strain used in the present study, form elaborate biofilms in which spore formation takes place preferentially at the tips of aerial structures that protrude from the surface of the community (Branda et al., 2001). Biofilm formation and sporulation are also connected in that both processes are dependent on Spo0A, the master regulator for entry into sporulation (Sonenshein, 2000; Branda et al., 2001; Hamon and Lazazzera, 2001). Indeed, and as we will argue here, expression of genes involved in matrix production may be a prelude to the process of spore formation. In *B. subtilis*, the matrix consists of an exopolysaccharide, which is produced under the direction of the 15-gene operon epsA-O (henceforth simply eps) (Branda et al., 2001) and the secreted protein TasA, which is encoded within the yqxM-sipW-tasA operon (henceforth simply yqxM) (Branda et al., 2006). Both operons are under the direct negative control of the repressor SinR (Kearns et al., 2005; Chu et al., 2006). Derepression under conditions promoting biofilm formation occurs, at least in part, through the action of Sinl, an antagonist of SinR (Bai et al., 1993; Kearns et al., 2005). Sinl binds to the SinR repressor in a one-to-one stoichiometry, thereby preventing the repressor from binding to DNA (Lewis et al., 1996; 1998).

The starting point for this investigation was the puzzling observation that the level of expression of the sinR gene, and as a consequence, the level of accumulation of its product, is much higher than that of sinl. If Sinl acts at a one-to-one stoichiometry with SinR, then how is derepression of the eps and yqxM operons achieved when the antirepressor is present at much lower concentrations than the repressor? Here we show that sinl is expressed at a high level but only in a small subpopulation of the cells, leading to the hypothesis that in these sinl-expressing cells the antirepressor reaches a threshold concentration sufficient to trigger repression. We further...
suggest that at the early stages of biofilm formation a
subpopulation of eps- and yqxM-expressing cells supplies
matrix to the entire community.

Results

Strategy

The goal of this work was to study the role of the SinR-
antagonist, SinI, in the derepression of the operons
(eps and yqxM) governing extracellular matrix formation.
A complication in attempting to do so was that biofilms are
an architecturally complex community of tightly packed
cells in which it is difficult to carry out quantitative studies
on gene expression. To circumvent this problem, we took
advantage of the fact that transcription from the promoters
for the eps and yqxM operons is strongly induced by 1 h
after the end of exponential phase growth under condi-
tions in which the cells are uniformly dispersed in shaking
cultures in the biofilm-promoting medium MSGg (Kearns
et al., 2005; Branda et al., 2006; Chu et al., 2006).
Accordingly, and for the purposes of studying the role of
SinI in derepression of the eps and yqxM operons, we car-
ried out our experiments with cells in homogeneous suspen-
sion in shaking cultures.

SinR is much more abundant than SinI

Based on the 1:1 stoichiometry of SinR and SinI in the
heteromeric complex of the two proteins (Lewis et al.,
1996; 1998), the cellular concentration of SinI is expected
to be at least as great as that of SinR under conditions in
which SinR-controlled genes are derepressed. Indeed,
previous Electrophoretic Mobility Shift Assays have
shown that the concentration of SinI must be equal to, or
in excess of, that of SinR to displace the repressor from its
operator (Bai et al., 1993; Kearns et al., 2005). We were
therefore puzzled to discover that the level of expression
of the sinI gene, as judged by using lacZ fused to the sinI
promoter (PsinI-lacZ), was approximately 15-fold lower
than that of Peps-lacZ in cells of the wild strain 3610
growing in a medium (MSGg) that promotes biofilm forma-
tion (Branda et al., 2001) (Fig. 1A).

We wondered whether this difference in promoter activity
was reflected in the relative cellular concentrations of the
two proteins. Accordingly, we carried out quantitative
immunoblot analyses with antibodies directed against SinI
or SinR, using as standards purified SinR and SinI pro-
tein that had been tagged with histidine (His6–SinI and
His6–SinR). The results show that the cellular concentra-
tion of SinI (∼50 molecules/cell) was 18-fold lower than
that of SinR (∼900 molecules/cell) in cells reaching early
stationary phase (Fig. 1B and C), the time at which dere-
pression of SinR-controlled genes commences (Kearns
et al., 2005). Thus, the concentration of SinI would appear
to be too low to counteract SinR effectively.

Cell population heterogeneity could explain the
SinI/SinR paradox

A clue to resolving the paradox comes from the transcrip-
tional regulation of sinR and sinI. Previous work has
shown that sinR is expressed constitutively from an
e3-dependent promoter whereas sinI is under the control
of Spo0A, the master regulator for sporulation (Gaur et al.,
1988; Shafrikani et al., 2002). Spo0A is known to be active
in only a subset of cells in the population (Chung et al.,
1994; Gonzalez-Pastor et al., 2003; Fujita and Losick,
2005). Thus, under conditions that activate Spo0A, the
culture bifurcates into a subpopulation of Spo0A-ON cells

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd, Molecular Microbiology
and a subpopulation of Spo0A-OFF cells. This cell population heterogeneity is believed to be governed by a bistable switch involving the phosphorelay and positive feedback loops that control the synthesis and phosphorylation of Spo0A (Burbulys et al., 1991; Stephenson and Hoch, 2002; Veening et al., 2005; V2006). [Actually, this is not a simple ON/OFF switch. Rather, when Spo0A is switched ON, the level of Spo0A increases in a graded manner over time with target promoters responding rapidly or slowly depending on their affinity for Spo0A (Jiang et al., 2000; Fujita and Losick, 2005). However, for present purposes we will simply consider Spo0A to be subject to an ON/OFF switch.] These considerations led us to hypothesize that SinR is produced more or less uniformly in all cells but that SinR is produced in only the subpopulation of Spo0A-ON cells. In other words, the protein measurements of Fig. 1 reflected the relative abundance of SinI and SinR averaged over the entire population. We also hypothesize that in those cells that are producing SinI, the protein antagonist reaches a sufficient concentration to overcome SinF-mediated repression. If so, then it further follows that only some cells in the population produce the polysaccharide and protein components of the extracellular matrix for the entire community. Indeed, earlier work has shown that mutants of the eps and ypxM operons can complement each other extracellularly, a finding that demonstrates that matrix components can be shared between cells (Brandt et al., 2006).

sinI is expressed in a subpopulation of cells

To test our hypothesis, we fused the promoters for sinI and sinR to the gene (gfp) for the green fluorescent protein (GFP). The P_{sinI} and P_{sinR} fusions were then integrated into the chromosome at the amyE locus of strain 3610, a wild strain of B. subtilis that forms architecturally complex biofilms (Brandt et al., 2001). Cells were grown to early stationary phase in MSgg medium and cell samples were prepared for fluorescence microscopy as described in the Experimental procedures. The results (Fig. 2A, left-hand panel) show that P_{sinI} was expressed in nearly all cells whereas P_{sinR} was expressed in only a small number of cells (the fraction of P_{sinI}-gfp-expressing cells being about 0.02; Fig. 2A, middle panel; Fig. 2C). It follows that if only about 2% of the cells are expressing sinI, then in those cells the level of SinI would exceed that of SinR; that is, the expected ratio of SinI to SinR would be roughly 2.8, which we calculate from the ratio of the concentration of SinI to SinR in the total population (1/18) divided by the fraction of cells that are producing SinI (0.02).

Confirming that sinI expression is indeed under Spo0A control, the results of Fig. 2A (right-hand panel) further show that little or no fluorescence from P_{sinI} was observed in cells of a spo0A mutant. Furthermore, the following experiment is consistent with the idea that cell population heterogeneity of Spo0A activation is the basis for the expression of sinI in only a subpopulation of cells. For this experiment, we replaced the wild-type spo0A gene with the mutant allele sad67, which encodes a truncated form of Spo0A whose activity does not depend on phosphorylation (Ireton et al., 1993). The sad67 gene was under the control of an IPTG (iso propyl β-D-thiogalactopyranoside)-inducible promoter and was introduced into a strain that carried P_{sinI} at the amyE locus. Therefore, the use of this construct bypassed the normal control mechanisms that govern Spo0A synthesis and phosphorylation. The results of Fig. 2B (left-hand panel) show that when inducer was absent, little or no sinI expression was observed. However, shortly after IPTG was added to the medium (to a final concentration of 1 mM), sinI expression was observed in almost all cells (Fig. 2B, right-hand panel).

Expression of sinI varies in different media

Spo0A is known to be activated to high levels in difco sporulation (DS) medium (Jiang et al., 2000; Fujita and Losick, 2005). Yet, B. subtilis 3610 does not form thick pellicles in standing DS medium (data not shown) or architecturally complex colonies on solid DS medium (Fig. 3A, 3B, and 3C).
left-hand and middle panels). How can this medium effect be explained? The results of Fig. 3B show that the medium effect is reflected in the expression levels of the extracellular matrix operon eps (left-hand panel) and the sinl gene (right-hand panel). Thus, transcription from the eps promoter as judged by using a P$_{sorC}$–lacZ fusion was fourfold higher in MSgg medium than that in DS medium (Fig. 3B, left-hand panel). Likewise, transcription from the sinl promoter as measured using the P$_{sinl}$–lacZ fusion described above was higher in MSgg than in DS (Fig. 3B, right-hand panel). We infer that MSgg promotes biofilm formation more robustly than does DS because sinl is expressed at a higher level in the biofilm medium than in the sporulation medium. Reinforcing this view, colonies of cells engineered to overexpress Sinl (as a functional fusion with GFP) grown on DS medium partially mimicked the complex colony architecture characteristic of MSgg-grown colonies (Fig. 3A, right-hand panel).

In light of these findings, we decided to compare the levels of Spo0A-directed gene expression in MSgg and DS media using a cfp fusion to the promoter for the sporulation operon spoIIG (P$_{spoIIG}$). P$_{spoIIG}$ is known to have a relatively low affinity for the response regulator and is activated only when cells have attained a high level of Spo0A activity (Baldus et al., 1994; Fujita et al., 2005). As seen in Fig. 3C, a substantial subpopulation of cells could be seen by hour 3 of sporulation in DS medium that were actively expressing the P$_{sorC}$–cfp fusion. In contrast, few cells expressing P$_{sorC}$–cfp at a high level were seen in MSgg medium at either hour 1 or hour 3. Figure 3D shows that sharply different results were obtained with P$_{sinl}$–gfp: even at hour 3, few cells expressing P$_{sinl}$–gfp at high levels were seen in DS medium. However, in MSgg medium, a small proportion of cells expressed sinl at high levels at both hour 1 and hour 3.

eps and yqxM are expressed in a subpopulation of cells

Our finding that sinl is highly expressed only in a small population of cells (Fig. 2A) predicts that transcription of the eps and yqxM operons would similarly be limited to a subpopulation of cells. In confirmation of this expectation, fluorescent microscopy experiments using cells carrying a gfp or a cfp fusion to the promoters for eps (P$_{eps}$–gfp) and yqxM (P$_{yqxM}$–cfp) showed that both fusions were expressed in only a subset of cells (Fig. 4A and B). Furthermore, when a null mutation of sinI was introduced into the fusion-bearing strains, cell population heterogeneity was eliminated and almost all cells in the population were observed to express P$_{sinl}$–gfp and P$_{yqxM}$–cfp (Fig. 4C).
D). In contrast, when a *sinl* mutation was introduced into the fusion-bearing strains, the proportion of cells expressing \(P_{\text{sinI-cfp}} \) and \(P_{\text{sinR-cfp}} \) was greatly reduced (Fig. 4E and F). We conclude that expression of the matrix operons is subject to cell population heterogeneity and that this heterogeneity is dependent on Sinl-mediated relief from repression by SinR.

Fig. 4. Fluorescence microscopy of cells expressing \(P_{\text{sinI-cfp}} \) or \(P_{\text{sinR-cfp}} \). The \(P_{\text{sinI-cfp}} \) or \(P_{\text{sinR-cfp}} \) was in a wild background (YC164 or YC189) or in a sinR (YC167 or YC221) or sinl (YC168 or YC190) mutant background. The cells were treated with the red membrane stain FM4-64. Fluorescence from \(P_{\text{sinI-cfp}} \) was false-coloured green.

Finally, to extend the analysis further, we asked whether in the case of *yqxM*, the expressing cells corresponded to the same cells that were expressing *sinl*. To address this question, we carried out a dual-labeling experiment using a fusion of *cfp* (false-coloured green in Fig. 5) to the promoter for *sinl* and a *yfp* fusion (false-coloured red in Fig. 5) to the promoter for *yqxM*. The \(P_{\text{sinR-cfp}} \) fusion was introduced into the chromosome at the *thrC* locus and the \(P_{\text{sinR-yfp}} \) fusion at the *amyE* locus.

The results showed that in cells highly expressing \(P_{\text{sinR-cfp}} \), the expression of \(P_{\text{sinR-yfp}} \) was also generally very strong (Fig. 5, left-hand column). Nevertheless, some cells could be observed that expressed \(P_{\text{sinR-yfp}} \) but seemingly not \(P_{\text{sinR-cfp}} \). Conversely, a few cells weakly expressing \(P_{\text{sinR-cfp}} \) were observed that were not measurably expressing \(P_{\text{sinR-yfp}} \). That some cells exhibited \(P_{\text{sinR-yfp}} \) but not \(P_{\text{sinR-cfp}} \) expression could indicate that transcription of *sinl* is transient and that transcription from the matrix operon persists after the *sinl* gene is no longer expressed. Conversely, the cells that were weakly expressing \(P_{\text{sinR-cfp}} \) but not \(P_{\text{sinR-yfp}} \) may simply represent cells that have not yet accumulated enough Sinl to derepress the *yqxM* operon.

As a comparison, we also created a control strain harbouring the \(P_{\text{sinR-yfp}} \) fusion and a *cfp* fusion to the promoter for *sinR* (\(P_{\text{sinR-cfp}} \)). The results of Fig. 5 (right-hand column) show that \(P_{\text{sinR-cfp}} \) was expressed in more or less all cells in the population whereas \(P_{\text{sinR-yfp}} \) was expressed in only a subpopulation.

Fig. 5. Fluorescence microscopy of cells harbouring both \(P_{\text{sinR-yfp}} \) and either \(P_{\text{sinR-cfp}} \) (YC243) or \(P_{\text{sinI-cfp}} \) (YC244). Fluorescence from \(P_{\text{sinR-yfp}} \) was false-coloured red. Fluorescence from \(P_{\text{sinR-cfp}} \) was false-coloured green. Images in D are overlays from the corresponding images in B and C.
In toto the results of the dual-labelling experiments demonstrate that expression of the yqxM matrix operon does indeed exhibit cell population heterogeneity. Moreover, the results are consistent with the idea that this heterogeneity can be wholly, or at least partly, attributed to heterogeneity in the expression of sinI. Nevertheless, because we could not demonstrate a one-to-one correlation of sinI and yqxM expression in all cases, we do not rule out the possibility that additional as yet undefined levels of regulation contribute to cell population heterogeneity in matrix operon expression.

Discussion

Cell fate is generally thought of as being deterministic. That is, the fate that cells adopt is in most cases governed by the history of the cell or its proximity to inductive signals from other cells. However, an increasing number of cases are now known in which cell fate is controlled by stochastic processes. Examples of cell fate that are governed by stochastic mechanisms are entry into the persistor state in Escherichia coli (Balaban et al., 2004, Lewis, 2007), and several cases in B. subtilis (Chung et al., 1994; Kearns and Losick, 2005; Dubnau and Losick, 2006; Maamar et al., 2007), including entry into the state of genetic competence, the choice between swimming and chains of sessile states, and entry into sporulation. The decision to enter sporulation is governed by a noise-driven, bistable switch controlling the accumulation of the transcription factor Spo0A–P (Veening et al., 2005; 2006). A further twist to the sporulation case is that the activation of Spo0A–P not only eventually leads to spore formation but first unleashes a cannibalistic like process in which cells that have activated Spo0A–P kill sibling cells that have not activated the transcription factor (Gonzalez-Pastor et al., 2003; Ellermeier et al., 2006). The nutrients thereby released stall sporulation. Therefore, Spo0A–P both promotes sporulation and indirectly impedes it. Cannibalism may be a mechanism to help ensure that cells do not commit to sporulation in response to what proves to be only a transient depletion of nutrients. Here we show that bistable control of Spo0A–P plays an additional role in the control of genes involved in production of extracellular matrix.

The principal finding of our investigation is that activation of sinI, which triggers derepression of the matrix operons eps and yqxM, occurs in only a subpopulation of the cells. In contrast, sinR, whose product is the target of SinI, is expressed more or less uniformly in the entire population. On this basis we propose that in the sinI-expressing cells, the concentration of the antirepressor reaches or exceeds that of the repressor, even though the overall level of SinI in the culture is much lower than that of SinR. It further follows from this that the matrix operons are derepressed only in a subpopulation of the cells, as confirmed by fluorescence microscopy using cells engineered to express fluorescent reporter genes joined to the promoters for the eps and yqxM operons. This implies that at the early stages of biofilm formation a subpopulation of cells are specialized for the production of matrix. Given earlier evidence indicating that matrix components can be exchanged between cells (Branda et al., 2006), it is tempting to speculate that the subpopulation of sinI-expressing cells is providing matrix components for the entire community.

The basis for this cell population heterogeneity is that sinI is under the positive control of Spo0A (Gaur et al., 1988; Shafikhani et al., 2002; Møller et al., 2003), whose synthesis and phosphorylation are known to be governed by a bistable switch (Veening et al., 2005). Consistent with this interpretation, cells engineered to produce a mutant form of Spo0A (Spo0A-Sad67) whose activity does not depend on phosphorylation (Ireton et al., 1993) expressed sinI in almost all cells in the population. Nonetheless, expression of sinI exhibited an unexpected medium dependence that seems at first glance to be at odds with the view that it is under the exclusive control of Spo0A–P. At 1 and 3 h after the end of exponential phase growth, a subpopulation of sinI-expressing cells was readily detected in the biofilm-promoting medium MSgg. In contrast, no sinI-expressing cells were detected at hour 1 and very few at hour 3 in the sporulation medium DS. Yet, growth in DS medium was much more effective in activating Spo0A than was growth in MSgg medium as judged from the expression of the promoter for the sporulation operon spoIIG. The spoIIG operon is under the direct positive control of Spo0A–P, but like other sporulation genes and operons under Spo0A–P control spoIIG has a relatively low affinity for the response regulator, representing a so-called high-threshold target of the response regulator (Fujita and Losick, 2005; Fujita et al., 2005). Hence, its expression requires relatively high levels of Spo0A–P. As seen in Fig. 3C, no spoIIG-expressing cells were observed at hour 1 in MSgg medium and relatively few at hour 1 in DS medium. However, by hour 3 in DS medium half or more of the cells were expressing spoIIG.

A possible clue to the basis for the dissimilar behaviours of sinI and spoIIG comes from an examination of the nucleotide sequence of the s^h-controlled promoter governing sinI transcription (Y. Chai, unpubl. analysis). Just upstream of the −35 region is a perfect match to the consensus binding site for Spo0A–P (the so-called OA box), which presumably functions as a high-affinity, activation site for the response regulator (Shafikhani et al., 2002). However, just downstream of the start site are three imperfect matches to the OA box. We speculate that...
these are operator sites at which Spo0A–P binding blocks the access of RNA polymerase to the promoter and thereby represses sinl but only when the response regulator reaches high enough concentrations to adhere to these postulated weak binding sites. We therefore posit that in MSgg medium Spo0A–P accumulates to intermediate levels that suffice to activate sinl but not repress it, thereby allowing for sustained synthesis of the antirepressor. In contrast, in DS medium Spo0A–P levels rapidly rise to levels that repress the biofilm-inducing gene. Our hypothesis therefore explains why MSgg medium but not DS medium promotes biofilm formation. Consistent with our hypothesis, colonies of cells engineered to overexpress sinl exhibited a rugose appearance on solid DS medium rather than the smooth-colony morphology characteristic of unengineered cells grown on the sporulation medium (Fig. 3A, middle and right-hand panels).

The goal of the current investigation was to study early events in the derepression of the extracellular matrix operon. For this purpose, we carried out our investigation using liquid cultures under conditions of continuous shaking in order to keep the cells dispersed and under uniform nutritional and aeration conditions. Normally, of course, cultures are not shaken during biofilm formation so that the cells can assemble into pellets at the air–liquid interface or into colonies on solid medium. In light of our finding of the bifurcation of the culture into a subpopulation of sinl-expressing cells, it will be of high interest in future work to visualize the distribution and abundance of matrix-producing cells within the biofilm itself over the course of its formation.

Experimental procedures

Strains and media

Bacillus subtilis strains PY79, 3610 and other derivatives were grown in Luria–Bertani (LB), DS or MSgg (Brandea et al., 2001), at 37°C or 22°C as indicated. *E. coli* strain DH5α was used as a host for molecular cloning and was grown at 37°C in LB medium. Approximately 1.5% agar was included when making solid agar medium. When appropriate, antibiotics were included at the following concentrations: 10 μg ml⁻¹ of tetracycline, 100 μg ml⁻¹ of spectinomycin, 20 μg ml⁻¹ of kanamycin, 5 μg ml⁻¹ of chloramphenicol and 1 μg ml⁻¹ of erythromycin.

Colony morphology analysis

For colony architecture analysis on solid media, strains were grown to exponential growth phase in LB broth and 3 μl of cells was then applied to solid medium containing 1.5% Bacto agar. The plates were incubated at 22°C for 3 days. Images of the colonies on the plates were taken using a Nikon CoolPix 950 digital camera.

Bistability and biofilm formation in Bacillus subtilis

Strain construction

To construct strains with promoter–lacZ fusions integrated into the chromosome at the amyE locus, the promoter sequences of sinl, sinR and the eps operon were amplified by polymerase chain reaction (PCR). *B. subtilis* 3610 chromosomal DNA was used as the template in all PCR reactions, and oligonucleotides P_{sinl}-F1 and P_{sinl}-R1, P_{sinR}-F1 and P_{sinR}-R1, and P_{eps}-F1 and P_{eps}-R1 were used for amplification of the promoter sequences of sinl, sinR and the eps operon respectively. PCR products were cloned into the plasmid pDG268 (Antoniwski et al., 1990). The resulting recombinant plasmids were then transformed into PY79 following the standard transformation protocol for *B. subtilis* (Gryczan et al., 1978). Transformants were selected for a double cross-over recombination at the amyE locus on the chromosome of PY79. The promoter–lacZ fusions at the amyE locus were then transferred from the PY79 background into the 3610 background using SPP1-mediated transduction as described previously (Yabsin and Young, 1974; Chu et al., 2006).

To construct promoter–gfp fusions, similar procedures as described above were applied except that oligonucleotides P_{eps}-F2 and P_{eps}-R2, P_{sinl}-F1 and P_{sinl}-R2, and P_{sinR}-F1 and P_{sinR}-R2 were used for amplification of the promoter sequences of sinl, sinR and the eps operon respectively. The amplified PCR products were cloned into another plasmid pYC121. Plasmid pYC121 contains a promoter-less gfp gene flanked by the amyE sequences and itself was constructed as follows: the gfp gene was amplified by PCR from the vector pNGFP (Chastanet and Losick, 2007) using oligonucleotides gfp-F1 and gfp-R1, and the PCR products were cloned into the HindIII and BamHI sites of the vector pDG1662 (Guérout-Fleury et al., 1996). The sequences of all PCR products were verified by DNA sequencing at Harvard DNA Sequencing Facilities.

For the construction of dual-labelled strains, the same promoter sequences of sinl and sinR to make promoter–gfp fusions were also cloned into plasmid pYC136 to generate promoter–cfp fusions. The recombinant plasmids were then transformed into PY79 and selected for a double cross-over recombination at the chromosomal thrC locus. The promoter–cfp fusions at the thrC locus were then transferred from the PY79 background into strain YC222, which contains a P_{thrC}-yfp fusion integrated at the chromosomal amyE locus in 3610 (The P_{thrC}-yfp fusion was a gift of H. Vlamakis and C. Aguilar).

All insertion deletion mutations were generated by long-flanking homology PCR that has been described previously (Wach, 1996). A detailed description of primers used in this work and all resulting strains is provided in Table S1.

β-Galactosidase assays

Cells were incubated in MSgg or DS medium at 37°C in a water bath with shaking. One millilitre of culture was collected at each time point. Cells were spun down and pellets were resuspended in 1 ml Z buffer (40 mM Na₂HPO₄, 60 mM NaH₂PO₄, 1 mM MgSO₄, 10 mM KCl and 38 mM β-mercaptoethanol) supplemented with 200 μg ml⁻¹ freshly made lysozyme. Resuspensions were incubated at 30°C for 15 min. Reactions were started by adding 200 μl of 4 mg ml⁻¹
ONPG (2-nitrophenyl-β-D-galactopyranoside) and stopped by adding 500 μl of 1 M Na2CO3. Samples were briefly spun down. The soluble fractions were transferred to cuvettes (VWR), and OD280 values of the samples were recorded using a Pharmacia ultramicrospectrometer 2000. The β-galactosidase-specific activity was calculated according to the equation (OD280/time × OD280) × dilution factor × 1000. Assays were conducted at least in duplicate.

Purification of His6-SinR and His6-Sinl proteins

Escherichia coli strains RL4219 and RL4220 (Keams et al., 2005) were used for the production of His6-SinR and His6-Sinl fusion proteins respectively. Five hundred millilitres of cultures was grown in LB broth supplemented with 25 μg ml⁻¹ kanamycin and 50 μg ml⁻¹ chloramphenicol at 30°C to an OD600 of 0.5. IPTG was then added to a final concentration of 1 mM and cultures were incubated at 30°C for two more hours. Cells were harvested and washed once with 50 ml cold phosphate buffer (20 mM sodium phosphate, 200 mM NaCl, 10% glycerol, 1 mM PMSF, pH 7.4). Cell pellets were suspended in 5 ml of cold phosphate buffer supplemented with 200 μg ml⁻¹ of freshly made lysozyme solution and incubated on ice for 30 min. Lysed cells were further disrupted on ice using sonication. Cell lysates were centrifuged at 5000 r.p.m. for 5 min to remove cell debris and were further ultracentrifuged at 35 000 r.p.m. for 30 min at 4°C. Soluble fractions were transferred to clean cold tubes.

One millilitre of Ni-NTA agarose beads (Qiagen) was added to the cleared lysate and samples were gently rotated for 2 h at 4°C. The lysate/bead mixture was then loaded onto a column and washed five times, each time with two bed volumes of wash buffer (20 mM sodium phosphate, 300 mM NaCl, 10% glycerol, 20 mM imidazole, pH 8.5). Collected samples were dialysed against 20 mM sodium phosphate, 300 mM NaCl, 0.3 mM DTT, 10% glycerol, pH 7.4 and were quantified using a BCA Protein Assay Kit by Pierce (IL, USA). Proteins were aliquoted and stored in 50% glycerol at −80°C.

Quantitative immunoblotting

Protein lysates were diluted, mixed 2:1 with protein lysis buffer (Bio-Rad) and were size-fractionated by 15% SDS-PAGE. In parallel, affinity-purified His6-SinR and His6-Sinl proteins were diluted in the same way and loaded on the same SDS-PAGE. After size-fractionation, proteins were transferred to an immunoblot-specific PVDF membrane (Bio-Rad) at 250 mA for 2 h using a Bio-Rad mini-PROTEIN II Cell. After completion of protein transfer, the membrane was briefly washed with TBS buffer (20 mM Tris-Cl, 200 mM NaCl, 0.1% Tween 20, pH 7.5) and incubated in 30 ml TBS buffer supplemented with 5% skim milk. The membrane was then transferred to a clean tip box and incubated with the affinity-purified antiserum against either Sinl or SinR at a dilution of 1:10 000 in 15 ml TBS buffer. After 3 h incubation at room temperature with gentle shaking, the membrane was washed three times, each time with 30 ml TBS buffer. A second goat anti-rabbit antibody (Bio-Rad) was added to the membrane with a dilution of 1:6000 in 15 ml TBS buffer and incubated at room temperature for 1 h. The membrane was again washed three times with TBS buffer. Finally, the membrane was transferred to a clean tip box, mixed with 7 ml each of Solutions A and B in the SuperSignal West Pico Chemiluminescent Kit (Pierce), and incubated for 5 min at room temperature. An X-ray film was exposed to the membrane and then developed using an Eastman Kodak RP X-OMAT processor.

To quantify the number of Sinl molecules per cell, we estimated that the pixel density from the lane containing 10 fmol of purified His6-Sinl was roughly equal to that from the middle lane on the right panel (Fig. 2C), which contained protein prepared from a total of 1.2 × 10¹⁹ cells. It was thus calculated that for each cell, there are about 50 molecules of Sinl. The number of SinR molecules per cell was quantified in a similar way. We estimated that the pixel density from the middle lane on the right panel (Fig. 2B), which contained protein prepared from a total of 6 × 10¹⁵ cells, would have been equal to 90 fmol of purified His6-SinR. We thus calculated that there are about 900 SinR molecules per cell.

Fluorescence microscopy

Cells were grown in MSgg broth to early stationary phase. One millilitre of the culture was harvested and centrifuged. Cells were washed with PBS buffer twice (PBS buffer was autoclaved and filtered through a 0.25 μm syringe filter prior to use), and resuspended in 50 μl PBS buffer. Three microlitres of resuspended cells was dropped on the center of an agar-coated microscopy slide (VWR, catalogue number 48311-702), and covered by a 0.15 mm microscopy cover slide (VWR, catalogue number 48366-045). Cover slides were pretreated with poly-L-lysine. Samples were examined using an Olympus workstation BX61. Images were taken and analysed using an automated software program MetaMorph (Universal Imaging Corporation).

Acknowledgements

We thank members of the Losick and Kolter labs for helpful discussions, especially Drs A. Chastenet, C. Aguilar and H. Vlamakis. We also thank D. Keams (Indiana University) for providing affinity-purified SinR and Sinl antibodies. This work was supported by NIH Grant GM18568 to R.L. and GM58213 to R.K. Y. Chai is a postdoctoral fellow of the Jane Coffin Childs Memorial Fund.

References

© 2007 The Authors

Journal compilation © 2007 Blackwell Publishing Ltd, *Molecular Microbiology*
Bisatability and biofilm formation in Bacillus subtilis

Veening, J.W., Smits, W.K., Hamoen, L.W., and Kuipers,

Supplementary material

This material is available as part of the online article from: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2958.2007.06040.x
(This link will take you to the article abstract).

Please note: Blackwell Publishing is not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
AUTHOR QUERY FORM

Dear Author,

During the preparation of your manuscript for publication, the questions listed below have arisen. Please attend to these matters and return this form with your proof.

Many thanks for your assistance.

<table>
<thead>
<tr>
<th>Query References</th>
<th>Query</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>q1</td>
<td>Au: Is this running head OK? If not, please provide another one.</td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td>Au: Please provide the corresponding author’s telephone and fax numbers.</td>
<td></td>
</tr>
</tbody>
</table>
Please correct and return this set

Please use the proof correction marks shown below for all alterations and corrections. If you wish to return your proof by fax you should ensure that all amendments are written clearly in dark ink and are made well within the page margins.

<table>
<thead>
<tr>
<th>Instruction to printer</th>
<th>Textual mark</th>
<th>Marginal mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leave unchanged</td>
<td>• • • under matter to remain</td>
<td>/setup/</td>
</tr>
<tr>
<td>Insert in text the matter indicated in the</td>
<td>/ through single character, rule or underline or</td>
<td>new character / or new characters /</td>
</tr>
<tr>
<td>margin</td>
<td>• • • through all characters to be deleted</td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>/ through letter or</td>
<td></td>
</tr>
<tr>
<td>Substitute character or</td>
<td>• • • through characters</td>
<td></td>
</tr>
<tr>
<td>substitute part of one or more word(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change to italics</td>
<td>— under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to capitals</td>
<td>— under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to small capitals</td>
<td>— under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to bold type</td>
<td>~ ~ under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to bold italic</td>
<td>~ ~ under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to lower case</td>
<td>Encircle matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change italic to upright type</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Change bold to non-bold type</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert ‘superior’ character</td>
<td>/ through character or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• • • where required</td>
<td></td>
</tr>
<tr>
<td>Insert ‘inferior’ character</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert full stop</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert comma</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert single quotation marks</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert double quotation marks</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert hyphen</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Start new paragraph</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>No new paragraph</td>
<td>— • •</td>
<td></td>
</tr>
<tr>
<td>Transpose</td>
<td>□ • •</td>
<td></td>
</tr>
<tr>
<td>Close up</td>
<td>linking □ characters</td>
<td></td>
</tr>
<tr>
<td>Insert or substitute space</td>
<td>/ through character or</td>
<td></td>
</tr>
<tr>
<td>between characters or words</td>
<td>• • • where required</td>
<td></td>
</tr>
<tr>
<td>Reduce space between</td>
<td>between characters or words affected</td>
<td></td>
</tr>
<tr>
<td>characters or words</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>