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ABSTRACT

Mathematical and statistical network modeling is an important step toward uncovering the
organizational principles and dynamic behavior of biological networks. This chapter focuses
on methods of constructing discrete dynamic models of biochemical networks from high-
throughput experimental data sets, also sometimes referred to as top-down modeling or
reverse-engineering. Time-discrete dynamical systems models have long been used in
biology, particularly in population dynamics. The models we mainly focus on here are also
assumed to have a finite set of possible states for each variable. That is, the modeling frame-
work discussed in this chapter is that of time-discrete dynamical systems over a finite 
state set.

After a brief survey of Boolean network and multi-state models, we discuss a modeling
method using tools from computer algebra and the theory of Groebner bases. The method
provides a compact description of the entire space of possible models and chooses from
that space a model that is minimal in the sense that it contains no components that vanish
on the data set used to construct the model. We also discuss the requirements of a mathe-
matical program for the identification of biological systems.

I. INTRODUCTION

“All processes in organisms, from the interaction of molecules to the complex func-
tions of the brain and other whole organs, strictly obey these physical laws. Where
organisms differ from inanimate matter is in the organization of their systems and
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especially in the possession of coded information (Mayr 1988, p. 2).” It is the task
of systems biology to elucidate those differences. This process has barely begun
and many researchers are testing computational tools that have been used suc-
cessfully in other fields for their efficacy in helping to understand many biological
systems. Here we are concerned with cellular biochemical networks. Mathematical
and statistical network modeling is an important step toward uncovering the orga-
nizational principles and dynamic behavior of such networks.

This chapter focuses on methods of constructing discrete dynamic models of
biochemical networks from high-throughput experimental data sets, also some-
times referred to as top-down modeling or reverse-engineering. Time-discrete
dynamical systems models have long been used in biology, particularly in popula-
tion dynamics. The models we mainly focus on here are also assumed to have a
finite set of possible states for each variable. Boolean networks are an example,
using only two possible states for each variable. This assumption requires that all
experimental measurements, which are real-valued, be first discretized into a finite
number of classes.

Because we need to use time series of measurements to make dynamic models
and might want to use heterogeneous data sets, great care must be taken during
this step so as not to lose too much information. The resulting models will have a
lower resolution than, say, ODE models. However, in exchange they are sometimes
easier to analyze. We see an important role for discrete models to provide con-
straints on the structure and dynamics of higher-resolution continuous models. In
the language of Ideker and Lauffenburger (2003), discrete models are more high-
level than ODE and PDE models.

After a short survey of discrete finite-state modeling frameworks and methods,
we present a detailed description of a multi-state modeling technology that has a
strong mathematical underpinning, providing mathematical and computational
tools for model selection and analysis. We then discuss the issue of linking discrete
high-level models with continuous low-level ones. Finally, we exploit the analogy
of top-down modeling to the process of system identification in engineering and
applied mathematics to outline some steps in a modeling program for cellular 
pathways.

II. TOP-DOWN MODELING

Traditionally, models of molecular regulatory systems in cells have been created
bottom-up, where the model is constructed piece-by-piece by adding new com-
ponents and characterizing their interactions with other molecules in the model.
This process requires that the molecular interactions have been well characterized,
usually through quantitative numerical values for kinetic parameters. Note that the
construction of such models is biased toward molecular components that have
already been associated with the phenomenon. Still, modeling can be of great help
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in this bottom-up process, by revealing whether the current knowledge about the
system is able to replicate its in vivo behavior.

There are many good examples of this process. Teusink et al. (2000) have built a
comprehensive model of yeast glycolysis based on detailed kinetics of 15 enzymes
of carbohydrate catabolism. Arkin et al. (1998) studied stochastic switching between
lysis and lysogeny in a model of lambda phage infection. In a landmark paper, Bray
et al. (1993) studied the regulation of chemotactic swimming of E. coli cells, corre-
lating the model to the phenotypes of dozens of mutants. For an example of
bottom-up modeling of a problem involving spatial distributions of signaling 
molecules, we refer to a study of calcium waves in neuroblastoma cells by Fink et
al. (2000).

Bottom-up modeling is essentially a process of synthesis by which models of 
isolated cellular components (enzymes, and so on) are merged to become part of
a larger model. Note that without applying other steps models built bottom-up are
mechanistic (i.e., represent one level of organization with all of the details of the
level below). For example, the model of ethanol catabolism mentioned previously
contains details of enzyme action of each of its 15 component enzymes.

This modeling approach is well suited to complement experimental approaches
in biochemistry and molecular biology, in that models thus created can serve to val-
idate the mechanisms determined in vitro by attempting to simulate the behaviors
of intact cells. Although this approach has been dominant in cellular modeling, it
does not scale very well to genome-wide studies because it requires that proteins
be purified and studied in isolation. This is not a practical endeavor due to its large
scale, but especially because a large number of proteins act on small molecules
that are not available in purified form, as would be required for in vitro studies.

With the completion of the human genome sequence and the accumulation of
other fully sequenced genomes, research is moving away from the molecular
biology paradigm to an approach characterized by large-scale molecular profiling
and in vivo experiments (or if not truly in vivo at least carried out with intact cells).
Technologies such as transcript profiling with microarrays, protein profiling with 
2-D gels and mass spectrometry, and metabolite profiling with chromatography and
mass spectrometry produce measurements that are large-scale characterizations of
the state of the biological material probed.

Other new large-scale technologies are also able to uncover groups of molecules
that interact (bind), allowing inference of interaction networks. All of these experi-
mental methods are data rich, and some people have recognized (Loomis and
Sternberg 1995; Brenner 1997; Kell 2004) that modeling is necessary to transform
these data into knowledge. A new modeling approach is needed to best suit large-
scale profiling experiments. Such a top-down approach will start with little knowl-
edge about the system, capturing at first only a coarse-grained image of the system
with only a few variables. Then, through iterations of simulation and experiment,
the number of variables in the model is increased. At each iteration, novel experi-
ments will be suggested by simulations of the model, which when carried out will
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provide data to improve the model further, leading to a higher resolution in terms
of mechanisms.

Although the processes of bottom-up and top-down modeling are distinct, both
have as an objective the identification of molecular mechanisms responsible for cell
behavior. The main difference between the two is that the construction of top-down
models is biased by the data of the large-scale profiles, whereas bottom-up models
are biased by the pre-existing knowledge of particular molecules and mechanisms.

Note that although top-down modeling makes use of genome-wide profiling
data it is conceptually very different from other genome-wide data analysis
approaches. Top-down modeling needs data produced in experiments that 
lend themselves to the approach—most likely those designed with that purpose in
mind. One should not expect that a random combination of arbitrary molecular
snapshots would be of much use for the top-down modeling process. Sometimes
they may serve some purpose (e.g., variable selection), but overall, top-down mod-
eling requires perturbation experiments that are carried out with appropriate con-
trols. In the face of modern experimental research methods, the development of
an effective top-down modeling strategy is crucial. In addition, we believe that 
a combination of top-down and bottom-up approaches will eventually have to 
be used.

III. DISCRETE MODELING METHODS

A. Boolean networks

The most common approach to the modeling of biochemical regulatory networks
is through systems of ordinary differential equations; that is, time-continuous
dynamical systems. In 1969, S. Kauffman proposed to model regulatory networks
as logical switching networks, described as Boolean networks (Kauffman 1969).
Boolean network models have the advantage of being more intuitive than ODE
models, and might be considered as a coarse-grained approximation of the “real”
network. They differ from ODE models in that molecules are considered present or
absent, rather than ranging over a continuum of values. There is increasing evi-
dence that certain types of regulatory networks have key features that can indeed
be represented well through Boolean models (Davidson 2002; Wang et al. 2002;
Fischle et al. 2003). Kauffman’s early work has generated a substantial literature 
on the subject (Raeymaekers 2002; Sabatti et al. 2002; Albert and Othmer 2003;
Kauffman et al. 2004).

Top-down modeling methods using the Boolean framework have been proposed
by Liang et al. (1998), Akutsu et al. (1999), and Akutsu et al. (2000). To include sto-
chastic features of gene regulation, probabilistic Boolean networks have been intro-
duced by Shmulevich et al. (2002). The issue of how the Boolean framework can
deal with experimental and biological noise was also addressed by Akutsu et al.
(2000).A
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B. Multi-state discrete models

One of the disadvantages of the Boolean modeling framework is the need to dis-
cretize real-valued expression data into an ON/OFF scheme, which loses a large
amount of information. Figure 12.1 shows mRNA concentrations of a gene regula-
tory network simulated with the biochemical network simulator Gepasi (Mendes
1997) on the left. The right side of Figure 12.1 shows three different discretizations:
one Boolean and the others allowing five (respectively 13) possible states.

This example makes it is clear that in many cases a finer data discretization is
needed in order for a model to capture the essential dynamic features contained
in a multivariate data set. Partly in response to this deficiency, multi-state discrete
modeling frameworks and hybrid models have been developed. One of the most
complex ones (Thomas 1991; Thieffry and Thomas 1998) uses multiple states for
the genes in the network corresponding to certain thresholds of gene expression
that make possible multiple gene actions. The model includes a mixture of multi-
valued logical and real-valued variables, as well as the possibility of asynchronous
updating of the variables. A top-down modeling method for this type of model was
proposed by Thomas et al. (2004). A software package for analyzing this type of
multi-state model is also available (de Jong et al. 2003).

Multiple discrete expression levels were also used in the reverse-engineering
method of Repsilber et al. 2002), which uses a genetic algorithm to explore the A
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parameter space of multistage discrete genetic network models. Although this
modeling framework is more effective than Boolean networks in capturing the many
characteristics of gene regulatory networks, it also introduces substantially more
computational complications from a top-down modeling point of view. A hybrid
modeling framework was introduced by Brazma and Schlitt (2003) that tries to
capture discrete as well as continuous aspects of gene regulation. The authors’
finite-state linear model has a Boolean-network-type of control component, as well
as linear functions that represent substances that change their concentrations con-
tinuously. For a more comprehensive review of modeling methods, see de Jong
(2002).

C. Finite-state polynomial models

We now describe a multi-state discrete model approach that leverages existing
algorithmic methods from symbolic computation and computational algebraic
geometry (Laubenbacher and Stigler 2004). It models a regulatory network as a
time-discrete multi-state dynamical system, synchronously updated. The method
shares many features with a recently developed continuous top-down method
(Yeung et al. 2002), which we first describe in some detail. According to the authors,
the method is intended to generate a “first draft of the topology of the entire
network, on which further, more local, analysis can be based.” The authors make
two assumptions. First, the system is assumed to be operating near a steady state,
so that the dynamics can be approximated by a linear system of ordinary differen-
tial equations:

For i = 1, . . . , N. Here, x1, . . . , xN are mRNA concentrations, the li are the self-
degradation rates, the bi are the external stimuli, and the xI represent noise. The
(unknown) wij, which are assumed to be constant over time, describe the type and
strength of the influence of the jth gene on the ith gene. They assemble to a square
matrix W of real numbers. The output of the reverse-engineering algorithm is this
matrix W. The input is a series of data points obtained by applying the stimulus 
(b1, . . . , bN)T and measuring the concentrations x1, . . . , xN

M times. Assembling 
these measurements into a matrix X, neglecting noise, and absorbing self-
degradation into the coupling constants wij, we obtain a matrix equation

Here, X is an (N ¥ M)-matrix, W an (N ¥ N)-matrix, and B an (N ¥ M)-matrix. Using
singular value decomposition (SVD), one obtains

XT = UWVT,

d
dt

X WX B( ) = + .

dx
dt

x t w t x t b t ti
i i ij i i ij

N= - ( ) + ( ) ( ) + ( ) + ( )
=Âl x

1
,
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where U and V are orthogonal to each other. The first step is to obtain a particular
solution W0 to the reverse-engineering problem. One then obtains all possible solu-
tions to the problem as

W = W0 + CVT,

where C ranges over the space of all square (N ¥ N)-matrices whose entries are
equal to 0 for a certain range of j and arbitrary otherwise. Equivalently, CVT ranges
over all matrices that vanish on the given time points. The second assumption made
in the paper is that gene regulatory networks are sparse. This provides a selection
criterion on which to base a particular choice for C, and hence for W. The method
selects the sparsest connection matrix W. This is accomplished through a particu-
lar choice of norm and robust regression. The algorithm was validated by way of
simulated data from three networks.

The modeling framework for the discrete analog of this method is that of time-
discrete dynamical systems over a finite state set X. Here, X is to be thought of as
the set of discretized experimental values. For instance, in the Boolean case we
have X = {0, 1}. To be precise, a dynamical system of dimension n over X is a 
function

f : Xn Æ Xn

with dynamics generated by iteration of f. We will call f a finite dynamical system.
Here, Xn denotes the set of all n-tuples with entries in X. Abbreviate an n-tuple 
(x1, . . . , xn) by x. The function f is determined by its coordinate functions fi : Xn Æ
X; that is,

f(x) = (f1(x), . . . , fn(x)).

Suppose that we are given one or more time series of state transitions, measur-
ing concentrations of mRNA, proteins, or metabolites. Our goal is to choose a finite
dynamical system f : Xn Æ Xn, which fits the data and “best describes” the network
that generated the data. To be precise, we assume that we are given sequences of
states

s1 = (s11, s21, . . . , sn1), . . . , sm = (s1m, . . . , snm)

t1 = (t11, t21, . . . , tn1), . . . , tr = (t1r, . . . , tnr)

. . .

These satisfy the property that if the unknown transition function of the network
is f then

f(si) = si+1, for i = 1, . . . , m - 1

f(tj) = tj+1, for j = 1, . . . , r - 1

. . .

Typically, there will be more than one possible choice. In fact, unless all state tran-
sitions of the system are specified there will always be more than one model that A
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fits the given data set. Because this much information is hardly ever available in
practice, any top-down modeling method has to choose from a large set of possi-
ble models. As with most methods, ours will also choose the simplest model, in a
certain sense. Before describing the selection principle used, we first need to
describe the computational framework.

If we do not impose any further mathematical structure, we are left with a problem
about set functions. No systematic computational tools for finding dynamical
systems that fit the data (and for choosing a particular one) are available in this
general setting. The standard mathematical solution is to endow the model space
with a suitable additional mathematical structure. One way to do this is by a process
analogous to the imposition of a coordinate system onto an affine space, resulting
in an algebraic structure on the set of points in the space. Precisely, we assume that
our set X is equipped with the structure of a finite number system; that is, a finite
field.

It is well-known that this can be done whenever the number of elements in X is
a power of a prime number p. This assumption is a straight-forward generalization
of the Boolean case, where we can take advantage of Boolean arithmetic (e.g., 1 +
1 = 0). Because the cardinality of X depends on the resolution of the discretization
we choose, this is an easy assumption to satisfy in practice by refining the resolu-
tion, if needed. One possible approach is to choose a prime number p of possible
variable states, in which case the number system can be taken to be Z/p, the inte-
gers modulo p.

An important consequence of this assumption is the well-known fact (Lidl and
Niederreiter 1997, p. 369) that each of the coordinate functions of f can be
expressed as a polynomial function in n variables, with coefficients in X, and so that
the degree of each variable is less than the number of elements in X. For instance,
each Boolean function can be expressed as a polynomial, via the correspondence
x Ÿ y = xy, x ⁄ y = x + y + xy, and ÿx = x + 1. In other words, polynomial dynamical
systems can serve as a computational model for all finite dynamical systems over
a finite field. We are now in a position to use the rich algorithmic theory of poly-
nomial algebra that has been developed over the last 20 years (Cox et al. 1997),
including sophisticated symbolic computation software. Thus, we can overcome
one disadvantage that discrete models have compared to ODE models, for which
there is a mature mathematical theory available.

Thus, assume now that our state set X is a finite field. The model f : Xn Æ Xn we
are searching for is determined by its coordinate functions fi : Xn Æ X. We can
reverse engineer each coordinate function independently and thus reconstruct the
system one variable at a time. The strategy of the method is to first compute the
space of all systems that are consistent with the given time series data. The core
of this computation is an interpolation algorithm. The method then chooses a par-
ticular system f = (f1, . . . , fn) that satisfies the following property.

Minimality: For each i, fi is minimal in the sense that there is no non-zero poly-
nomial g such that f = h + g and g is identically equal to zero on the given time
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points. That is, we exclude terms in the polynomials fi that vanish identically on the
data. In other words, we do not include interactions in the model that are not 
manifest in the given data set.

Suppose that fi and fi’ are two models that fit the given data set. Then, fi(x) = fi’(x)
for all data points x. That is, (fi - fi’)(x) = 0 for all x. Therefore, the set of all such
models can be described as fi + I, where fi is a particular model and I is the set of
all models that vanish identically on the given data set. In other words, the situa-
tion is very similar to the case of solving a nonhomogeneous system of linear equa-
tions, where fi represents a particular solution to the system and I represents the
solution space of the corresponding homogeneous system. The correspondence
with the ODE modeling method described by Yeung et al. (2002) is that fi corre-
sponds to W0 and I corresponds to the space C. Thus, we need to compute fi

and I.
The particular solution fi can be computed using a standard formula for Lagrange

interpolation (see Laubenbacher and Stigler (2004) for details). To compute Iwe use
mathematical algorithms from computer algebra based on the theory of Groebner
bases (Cox et al. 1997). What allows us to do this is the fact that the set of poly-
nomials that vanish on a given data set has the algebraic structure of an ideal in
the algebraic system X[x1, . . . , xn] of all polynomials in n variables with coefficients
in X. These algorithms are implemented using the computer algebra system
Macaulay2 (Grayson and Stillman, 2003). An important aspect of this computation
is that the set of all possible models is described not by enumeration but in terms
of a small set of generators, similar to describing a vector space by giving a basis
for it. The algorithm to select the simplest model from the set fi + I uses another
fundamental procedure in computer algebra: dividing a polynomial by all polyno-
mials in the ideal I.

One can prove that there is in fact a unique simplest model to choose. However,
the algorithm of Laubenbacher and Stigler (2004) depends on an up-front choice
of a total ordering of the variables x1, . . . , xn. This choice has the effect that the
algorithm uses the “cheapest” (smallest, in this ordering) variables preferentially.
On the one hand, this feature allows the incorporation of biological knowledge in
the case where certain interactions are already known. On the other hand, it arbi-
trarily biases the model output in the case where such information is absent.

In the work of Laubenbacher and Stigler (2004), several variable orders were used
and common terms in the polynomial models for each order were extracted to cir-
cumvent this problem. We briefly describe the validation of this approach. Albert
and Othmer (2003) presented a Boolean model for a well-characterized network of
segment polarity genes in Drosophila melanogaster. The network, consisting of five
genes and their products, is responsible for pattern formation in the Drosophila
embryo. The network is a ring of 12 interconnected cells, in which the genes 
are expressed in patterns resembling stripes. The genes represented in the 
Albert-Othmer model are wingless, engrailed, hedgehog, patched, and cubitus
interruptus.

A
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The proposed model is a collection of Boolean functions, representing the genes
and proteins in the network. Each function governs the state transitions of a single
compound. The following are four of the functions defined in the model.

f6 = hhi
t+1 = ENt

i Ÿ ÿCIRt
i

f7 = HHi
t+1 = hhi

t

f8 = ptci
t+1 = CIAi

t+1 Ÿ ÿENi
t+1 Ÿ ÿCIRi

t+1

f9 = PTCi
t+1 = ptct

i ⁄ (PTCt
i Ÿ ÿHHt

i-1 Ÿ ÿHHt
i+1)

Representing each biochemical with a variable, the Boolean functions may be
translated into polynomial functions, shown below.

f6 = x5(x15 + 1)

f7 = x6

f8 = x13((x11 + x20 + x11x20) + x21 + (x11 + x20 + x11x20)x21)
(x4 + 1)(x13(x11 + 1)(x20 + 1)(x21 + 1) + 1)

f9 = x8 + x9(x18 + 1)(x19 + 1) + x8x9(x18 + 1)(x19 + 1)

Treating this Boolean model as “reality,” wild-type and simulated knock-out
experiments were generated, creating knock-outs by setting a function represent-
ing a gene equal to 0. As the algorithm relies on the choice of an ordering of the
variables, causing some variables to have greater weight than the rest, four vari-
able orders were used to counteract this preferential ranking.

Not surprisingly, algorithm performance improved greatly with knock-out data
rather than just wild-type data. The algorithm is able to reconstruct approximately
84% of the interactions in the Boolean model, versus only 32% when only wild-type
data were used. Furthermore, it correctly identified 92% of the additive interactions
and 10% of the nonadditive interactions, whereas none of the nonadditive interac-
tions were identified in the model constructed with only wild-type data.

A more elegant solution was proposed by Allen et al. (2005). Using a large
number of randomly generated variable orders to generate models, the authors
then rank the variables according to their frequency of appearance in the models
for each of these variable orders. This ranking then determines a variable ordering
to be used for the final model construction.

Another shortcoming of the algorithm of Laubenbacher and Stigler (2004) is that
it relies on exact fitting of data. This makes the method very sensitive to noise that
is known to be present in DNA microarray and other “-omics” data. To avoid
models that are overly complex due to fitting of noise, the Laubenbacher group is
presently developing a genetic algorithm that optimizes between data fit and
model complexity. An important feature of the algorithm is that its performance is
substantially improved by supplying as initialization the output of the exact data-
fitting algorithm described previously versus a random initialization. The key theo-
retical ingredient in the algorithm is a mathematical characterization of theA
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evolution rules to guarantee that each mutation still satisfies the minimality crite-
rion imposed.

An important tool for working with polynomial models over finite fields is the
software package DVD (available at http://dvd.vbi.vt.edu as a web interface or for
download). The program takes a polynomial system as input. For binary systems,
one can also input Boolean functions, which are then translated into polynomial
functions. DVD then computes the phase space of the system and outputs statis-
tics such as the number of components, length of limit cycles, and so on. It also
outputs the wiring diagram of the system. For small systems, it visualizes the phase
space. Figure 12.2 shows the DVD interface.

IV. DATA DISCRETIZATION

The very important issue of data discretization has been studied from the points of
view of Bayesian network applications and machine learning (Dougherty et al. 1995;
Friedman and Goldszmidt 1996). The first important choice to make is the number
of discrete states to use. The second choice is the method by which to map real-
valued data to discrete states. There are various ways of labeling real-valued data
using finite-state sets. Thresholds with biological relevance are one type of labeling
that can be used. This is typically referred to as binning. For example, up-
regulation, no regulation, and down-regulation of a gene may be used as thresh- A

Figure 12.2. Snapshot of DVD interface.
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olds for partitioning the raw data into three groups, labeled 1, 0, and -1, respec-
tively. For binary states, the choice of threshold is particularly crucial, in that even a
relatively small change can result in very different discrete time series profiles (Sabatti
et al. 2002). Another method of discretization is to normalize the expression of each
gene or protein and use the deviation from the mean to discretize the data.

Any discretization method suitable for our purposes must preserve information
about the dynamic relationship between the different variables, and must accom-
modate several heterogeneous time series simultaneously (e.g., transcription data
as well as protein and metabolite concentrations). We have developed a method
based on a graph theoretic approach that has the important advantage that the
algorithm chooses an optimal number of states, based on the given data (Dimitrova
et al. 2005). Most discretization methods require such a choice as part of the input.
The algorithm has been implemented in C++ and is freely available. We illustrate
it with an example.

Consider the simulated gene regulatory network shown in Figure 12.3 (five genes,
whose wiring diagram is given in Figure 3a). The network was generated with the
artificial gene network system AGN (Mendes et al. 2003). After simulating the
network with the biochemical network simulator Gepasi (Mendes 1997), one finds
that it has the positive stable steady state (1.99006, 1.99006, 0.000024814, 0.997525,
1.99994). From the model, we generate six time series, each of length 20, includ-
ing one wild-type time series and five deletion mutant time series. The discretiza-
tion algorithm chooses the number system X = {0, 1, 2, 3, 4}, consisting of five
different states for the combined data set.

After using the multivariate interpolation algorithm, we obtain a “best” polyno-
mial model f : X5 Æ X5 in five variables. Its phase space consists of a directed graph
whose nodes are the 55 possible states for the five variables, and there is a directed
edge from state a to state b if f(a) = b. The model also has a fixed point, like the
continuous “real-world” system. Figure 3c shows a particular initialization of the
network, simulated in Gepasi, reaching the previously cited steady state. Figure 3d
shows a sample of the time series obtained by initializing the discrete model f with
the discretization of this initialization. It converges to the discretization (4, 4, 0, 4,
2) of the steady state cited previously.

This example illustrates the fact that the discrete model f exhibits the same qual-
itative dynamics as the continuous model we started with. Figure 3b shows the
wiring diagram of the discrete model obtained with our algorithm. The main point
of this example is to demonstrate that our discretization method preserves the
essential dynamic features of the continuous system representing “reality” in this
case, and our interpolation algorithm chooses a model that reflects these dynamic
features as well as most of the causal dependencies among the variables.

V. RELATIONSHIP BETWEEN DISCRETE AND CONTINUOUS MODELS

The relationship between discrete and continuous models has been studied exten-
sively in population dynamics (Durrett and Levin 1994; Henson et al. 2001; Domokos
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and Scheuring 2004; Geritz and Kisdi 2004). For models of biochemical and other
biological networks, this relationship was first explored by Glass and Kauffman
(1973), with subsequent work by Edwards (2000), Edwards et al. (2001), and Glass
et al. (2003). Within the modeling frameworks explored there, (bottom-up) discrete
models can be a helpful tool to provide constraints and information about (bottom-
up) continuous models of the same network. A good example of how a continu-
ous and a discrete model of the same system can be used together is given by
Muraille et al. (1996), where an ODE model of immune response to a replicating
pathogen is studied via a discrete logical model using the technique of Thomas
(1991). The dynamics of the discrete model, which are easy to analyze, are used to
obtain a qualitative picture of the dynamics of the ODE model.

A

c. Plot of time series of network. d. State space of model.

a. Wiring diagram of network. b. Wiring diagram of model.

Figure 12.3. Graphs of a network and its associated models. (a) Wiring diagram of network, (b) wiring
diagram of model, (c) plot of time series of network, and (d) state space of model.
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A corresponding mathematical theory for top-down modeling has yet to be
developed. How can high-level information from discrete multi-state dynamic
models of a network be incorporated into the model selection process for low-level
ODE models? For the polynomial system framework described here, we are devel-
oping such a theory in parallel with an ODE framework based on a linearization of
the dynamics (i.e., the Jacobian, a first-order truncation of the Taylor approxima-
tion to the dynamics).

Estimates of the elements of the Jacobian matrix are currently pursued through
non-linear least squares. Our aim is to develop ways in which these top-down
approaches become synergistic. In particular, we expect the results of the discrete
model to be used as initial states for the parameter estimation needed to define a
continuous model. We are currently carrying out experiments that will be used to
validate both methods, using integrated transcriptomics, proteomics, and
metabolomics time courses measuring oxidative stress response in Sacchromyces
cerevisiae.

VI. A MATHEMATICAL THEORY FOR DISCRETE MODELS

Discrete models are not well understood at a theoretical level. In particular, the rela-
tionship between the structure of a model and its dynamics has remained elusive.
There are no general results about the number of components of the state space
of Boolean or multi-state discrete models or about the existence of steady states.
Especially the question of steady states is an important one for biological models.
Having fairly general results about the relationship between structure and dynam-
ics for sufficiently large classes of models is an important problem.

Not surprisingly, these questions can be answered algorithmically for linear
systems. Let X be a finite field and f : Xn Æ Xn a linear system. That is, the coordi-
nate functions of f are linear polynomials without constant term. Then f can be rep-
resented by a matrix after making a choice of basis. It turns out that the structure
of the phase space of f can be completely determined from the factorization of the
characteristic polynomial of f, in particular the number of components and the
length of all limit cycles (Hernandez Toledo 2003).

Very few results are available for nonlinear systems. A modest first step toward
general results for sufficiently large classes of polynomial systems has been made
by Colon-Reyes et al. (2004). Suppose that f is a Boolean polynomial system all of
whose coordinate functions consist of monomials; that is, f is constructed using the
AND operator. Let G be the directed graph whose vertices are the variables of f.
There is a directed edge from xi to xj if xj appears in fi. Reversing the arrows of G,
one obtains the wiring diagram of the network. One can define a positive integer,
the loop number of G, which can be computed in polynomial time (relative to the
number of vertices in G). The main result of Colon-Reyes et al. (2004) is that f has
only steady states if and only if the loop number of all strongly connected compo-
nents of G is equal to 1.A
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VII. TOWARD A MATHEMATICAL THEORY OF BIOLOGICAL SYSTEM
IDENTIFICATION

The basic inverse problem we face in modeling biochemical networks is common
in engineering and applied mathematics, known as system identification. Our goal
is to make a phenomenological (and, ultimately, mechanistic) mathematical model
of a multivariate system we can observe as well as perturb, and about which we
may have partial knowledge. The major challenges, compared to typical engi-
neered systems, are that the system is very often high-dimensional, the number of
observations is small in comparison, and the information we have about the systems
is very limited.

The basic procedure is to choose an appropriate modeling framework, use one
or more time series of observations to identify some or all possible models within
this framework, and choose “the best” one from the possible model space. For
engineered systems there is a well-developed mathematical theory that helps in
this process. (An important application is the development of controllers for
systems.) In particular, there is a theory of system identifiability, which provides cri-
teria for how good a given data set is for the system identification process (Ljung
1999) for a comprehensive treatment of system identification.

No corresponding mathematical theory exists yet for the identification of bio-
logical systems. In particular, there is no good understanding about the appropri-
ate experimental design for a particular modeling framework that provides good
data sets for top-down modeling. The most commonly studied type of systematic
perturbation focuses on single genes in regulatory networks (Karp et al. 1999; Ideker
et al. 2000; Rung et al. 2002; Shmulevich et al. 2002; Tegner et al. 2003). Genetic
genomics provides another possible approach (Jansen 2003). Studies of the quan-
tity of data needed have been done by Krupa (2002) and Selinger et al. (2003). The
study of appropriate experimental designs for various modeling methods must be
part of a long-term systems biology modeling program.

VIII. CONCLUSIONS

We have discussed some top-down modeling methods resulting in time-discrete
dynamical system models over finite-state sets. They serve to provide high-level
information about systems that can be used as constraints for the construction of
low-level models, either top-down or bottom-up. Our method using polynomial
dynamical systems over finite fields has the advantageous feature that its mathe-
matical underpinning provides access to a variety of mathematical algorithms and
symbolic computation software. In particular, it provides a mathematical basis for
the investigation of questions such as “goodness” measures on data sets. Ulti-
mately, the performance of top-down modeling methods cannot be properly eval-
uated unless we understand what types of input data are required for optimal
performance. That is, the data must fit the models. A
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Experimental data sets suitable for the various modeling methods are still diffi-
cult to obtain, and the biochemical networks producing the data are typically too
poorly understood to truly test modeling performance. An important resource in
the field would be a collection of benchmark synthetic biochemical networks and
the ability to generate from them data sets covering various types of networks, pro-
viding wild-type and perturbation time series. One possible tool for generating
such networks and data is described by Mendes et al. (2003).

We believe that the field of system identification can serve as a blueprint for a
mathematical top-down modeling program in systems biology. Based on a well-
defined collection of model classes, from high-level statistical models down to ODE
and PDE models, such a program must include the development of appropriate
system identification methods for each model class and quality measures on data
sets that can be used to develop confidence measures for the resulting models.
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