The Composite Genome of the Legume Symbiont Sinorhizobium meliloti

Francis Galibert; Turlough M. Finan; Sharon R. Long; Alfred Pühler; Pia Abola; Frédéric Ampe; Frédérique Barloy-Hubler; Melanie J. Barnett; Anke Becker; Pierre Boistard; Gordana Bothe; Marc Boutry; Leah Bowser; Jens Buhrmester; Edouard Cadieu; Delphine Capela; Patrick Chain; Alison Cowie; Ronald W. Davis; Stéphane Dréano; Nancy A. Federspiel; Robert F. Fisher; Stéphanie Gloux; Thérèse Godrie; André Goffeau; Brian Golding; Jérôme Gouzy; André Goffeau; Brian Golding; Jérôme Gouzy; Mani Gurjal; Ismael Hernandez-Lucas; Andrea Hong; Lucas Huizar; Richard W. Hyman; Ted Jones; Daniel Kahn; Michael L. Kahn; Sue Kalman; David H. Keating; Ernö Kiss; Caridad Komp; Valérie Lelaure; David Masuy; Curtis Palm; Melicent C. Peck; Thomas M Pohl; Daniel Portetelle; Bénédicte Purnelle; Uwe Ramsperger; Raymond Surzycki; Patricia Thébault; Micheline Vandenbol; Frank-J. Vorhölter; Stefan Weidner; Derek H. Wells; Kim Wong; Kuo-Chen Yeh; Jacques Batut

Stable URL: http://links.jstor.org/sici?sici=0036-8075%2820010727%293%3A293%3C668%3ATCGOTL%3E2.0.CO%3B2-D

Science is currently published by American Association for the Advancement of Science.
served how short-wavelength excitations cause a breakdown of superfluidity in a BEC. Our results show how localized defects in a superfluid will quite generally either disperse into high-frequency ripples or end up in the form of topological defects such as solitons and vortices, and we have obtained an analytic expression for the transition between the two regimes. By varying our experimental parameters, we can create differently sized and shaped defects and can also control the number of defects created, allowing studies of a myriad of effects. Among them are soliton-soliton collisions, more extensive studies of soliton stability, soliton—sound wave collisions, vortex—soliton interactions, vortex dynamics, interaction between vortices, and the interaction between the BEC collective motion and vortices.

References and Notes
27. We use the definition $\Omega_{1} = E_{\Omega_{1}} - d_{\Omega_{1}}$, where $E_{\Omega_{1}}$ and $d_{\Omega_{1}}$ are the slowly varying electric field amplitudes and $d_{\Omega_{1}}$ are the electric dipole matrix elements of the transitions.
35. For propagation of the Gross—Pitaevskii equation in 1D, we typically used a spatial grid with 4000 points and $\Delta x = 0.004 \mu m$. In 2D simulations, we typically used a 750 X 750 grid with $\Delta x = 0.21 \mu m$ and $\Delta y = 0.057 \mu m$. To solve the equations self-consistently, we kept track of the wave functions at previous time points and projected forward to second order. Smaller time steps and grid spacing were also used to assure convergence of the results. To mimic the nonlinear interaction strength at the center of a 3D cloud, we put in an effective condensate radius (calculated with the Thomas–Fermi approximation [30]) in the dimensions that were not treated dynamically. In all calculations, the initial condition was the ground-state condensate wave function with all atoms in $|1\rangle$, obtained by propagating a Thomas–Fermi wave function in imaginary time.
40. Supplementary material is available at Science Online (www.sciencemag.org/cgi/content/full/293/5537/DC1).
41. Supported by a National Defense Science and Engineering Grant sponsored by the U.S. Department of Defense (C.S.), the Rowland Institute for Science, the Defense Advanced Research Projects Agency, the U.S. Air Force Office of Scientific Research, the U.S. Army Research Office OSD Multidisciplinary University Research Initiation Program, the Harvard Materials Research Science and Engineering Center (sponsored by NSF), and the Carlberg Foundation, Denmark.
15 May 2001; accepted 11 June 2001
Published online 28 June 2001
10.1126/science.1062527
Include this information when citing this paper.

The Composite Genomic of the Legume Symbiont Sinorhizobium meliloti

Francis Galibert,1 Turlough M. Finan,2 Sharon R. Long,1,4,4 Alfred Pühler,5 Pia Abola,5 Frédéric Ampe,3 Frédérique Barloy-Hubler,1 Melanie J. Barnett,3 Anke Becker,5 Pierre Boistard,7 Gordana Bothe,6 Marc Boutry,6 Leah Bowser,6 Jens Buhrmester,5 Edouard Cadieu,1 Delphine Capela,1,7 Patrick Chain,2 Alison Cowie,2 Ronald W. Davis,6 Stéphane Dréano,1 Nancy A. Federspiel,6 Robert F. Fisher,1 Stéphanie Gloux,2 Thérèse Godrie,10 André Goffeau,1 Brian Goldberg,8 Jérôme Gouzy,7 Mani Gurjal,6 Ismael Hernandez-Lucas,2 Andrea Hong,5 Lucas Huizar,6 Richard W. Hyman,6 Ted Jones,6 Daniel Kahn,5 Michael L. Kahn,11 Sue Kalman,6 David H. Keating,3,4 Ernö Kiss,2 Caridad Komp,5 Valérie Laloue,1 David Masuy,5 Curtis Palm,6 Melicent C. Peck,3 Thomas M Pohl,1 Daniel Portetelle,10 Bénédicte Purnelle,1 Uwe Ramsperger,8 Raymond Surzycki,6 Patricia Thébault,7 Micheline Vandenbol,1 Frank-J. Vorhöltter,5 Stefan Weidner,5 Derek H. Wells,3 Kim Wong,7 Kuo-Chen Yeh,7,8 Jacques Batut7

Symbiotic nitrogen fixation is profoundly important for the environment. Most plants assimilate mineral nitrogen only from soil or added fertilizer. An alternative source powered by photosynthesis, rhizobium-legume symbioses provide a major source of fixed
nitrogen. Evolution in diverse legumes of high protein content in seeds (e.g., soybean) and leaves (e.g., alfalfa) may reflect the ability of many plants in this taxon to obtain nitrogen from bacterial symbionts while growing in poor soils. Improved understanding of the rhizobia-legume symbiosis has implications for sustainable agriculture and ecosystem function. Sinorhizobium meliloti, the symbiont of alfalfa, is a focus of research both because of the symbiosis and because, as an α-proteobacterium, it is closely related to bacterial plant and animal pathogens including Agrobacterium and Brucella. Rhizobia infect roots and induce nodules, specialized organs where bacterial endosymbionts fix nitrogen within the plant cytoplasm. The bacteria and plant exchange signals during nodule development and establish an intimate metabolic exchange of bacterial fixed nitrogen for plant carbon compounds. We understand some symbiotic mechanisms, but how the microbe stimulates nodule organogenesis, how it invades the plant without triggering host defenses, and how and why the bacterium fixes nitrogen for the host rather than for its own metabolism attract considerable interest. Furthermore, for symbiosis to be a successful habit, the bacteria must maintain their populations in the soil and establish themselves competitively in the rhizosphere through adaptations that are little understood.

Sinorhizobium meliloti has been the subject of extensive genetic, biochemical, and metabolic research; this knowledge provides a solid foundation for genomic experimentation. We report here the complete and fully annotated nucleotide sequence of the S. meliloti strain 1021 genome (1), and an integrative analysis of the biology implied by the sequence (2). We also present the first global comparison between two rhizobial genomes, the S. meliloti genome and the recently reported Mesorhizobium loti genome (3). In addition to these two complete genomes, the 536-kb symbiotic plasmid of Rhizobium sp. NGR234 (4) and a 410-kb region of the chromosome of Bradyrhizobium japonicum (5) have been sequenced and annotated. Methods and detailed analyses of the S. meliloti chromosome, pSymA, and pSymB are reported concurrently (6–8).

General Features of the Genome

Main features of the genome are listed in Table 1. The S. meliloti genome consists of three replicons: one large replicon of 3.65 Mb and two smaller replicons, pSymA and pSymB, of 1.35 and 1.68 Mb, respectively (Fig. 1).

Although one of the largest bacterial genomes (6.7 Mb) sequenced to date, the S. meliloti genome is somewhat smaller than the 7.6-Mb M. loti genome. We predict 6204 protein-coding genes from the S. meliloti genome sequence, compared with

Fig. 1. Linear representation of the S. meliloti genome (strain 1021). Each replicon is drawn to scale. First line: Coordinates relative to the sequence on Web site (2) (in megabases). Second line: Distribution of genes according to direction of transcription (+ strand above) and functional categories (blue, small molecule metabolism; green, macromolecule metabolism; orange, structural elements; yellow, cell processes; red, elements of external origin; pink, not classified regulators; gray, conserved hypothetical and unknown/hypothetical). Third line: Distribution of IS and phage-related sequences. Fourth line: Recently duplicated genes (those with at least 90% nucleotide identity over their entire length) including rrs operons (green arrows). Duplications of differently named genes are matched by color. Because of space constraints, the SMa0753/SMa0758 duplication at 0.41 Mb is not shown. Loci where clusters of genes are reiterated are indicated by an asterisk. Fifth line: GC% variation along the replicons with mean value as a red dotted line.
A function could be postulated for 59.7% of S. meliloti genes on the basis of database comparisons, whereas 8.2% of the S. meliloti gene products had no database match. The proportion of orphan genes was significantly higher on the megaplasmids than on the chromosome, with 11.5% on pSymA and 12.3% on pSymB (Table 1).

Contrary to expectations (9–11), the genome of S. meliloti is not highly reiterated. A limited number of genes appear to be recently duplicated, including several symbiotic genes (Fig. 1). However, the S. meliloti genome contains many ancient duplications, because 42% (2589) of S. meliloti genes belong to 548 paralogous families, ranging from 2 to 134 genes per family (2, 12). This high level of paralogy suggests that genome size has been little constrained during S. meliloti evolution, facilitating the acquisition of new adaptive functions for life in the soil and for symbiosis. This is illustrated by the rich set of transport and regulatory functions (see below).

Insertion sequence (IS) elements and phage sequences compose 2.2% of the S. meliloti genome, but their distribution varies (Table 1). Overall abundance is higher on pSymA, especially near symbiotic genes (Fig. 1), a feature similar to other rhizobial symbiotic plasmids and regions (3–5, 13). This provides additional evidence that symbiotic regions are prone to DNA rearrangements (3). Twenty-one types of IS are identified on the S. meliloti genome: four are chromosome-specific, four are pSymA-specific, and one is pSymB-specific (see 2 for additional data on IS).

Replication, transfer, and maintenance of pSym megaplasmids. The unusual size of the megaplasmids raises the question of whether they are plasmids or chromosomes. pSymA and pSymB share plasmid features with Rhizobium sp. pQGR234a and Agrobacterium Ti and Ri plasmids: repABC genes were identified by sequence similarity, and a linked putative origin of replication was inferred from GC skew analysis. pSymA contained putative conjugative transfer genes (traACDG) and a putative oriT sequence, but lacked the traRMBF and trbDJKLFH genes found on other rhizobial plasmids. Transfer experiments are required to determine whether pSymA is a transferable plasmid. pSymB lacks transfer genes, except for a paralog of the pSymA traA and oriT. Its lower G + C content (60.4%) compared with the other two replicons (Table 1) and its strikingly distinct codon usage [see Web site (2)] suggest an alien origin for pSymA.

No essential gene could be predicted on pSymA, consistent with previous data (14). However, essential genes are present on pSymB, including the arginine tRNA, 16S rRNA, 23S rRNA, the minCDE cell division genes that may also be essential; and two candidate genes for asparagine synthesis (asn), one of which should be required for growth in minimal medium (8). Therefore pSymA is clearly plasmidlike, whereas pSymB has several chromosomal features.

Transport functions. Genes encoding transport systems constitute the largest (12%) class of genes in the S. meliloti genome. Most of these are ABC transporters (Fig. 2), as is the case in other bacterial genomes. Their relative abundance is particularly high (17.4%) on pSymB, where almost all are predicted to be import sys-

Fig. 2. Distribution of transport and regulatory proteins by replicon. pSymA is blue, pSymB is yellow, chromosome is green.

Table 1. General features of the S. meliloti strain 1021 genome.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Chromosome</th>
<th>pSymA</th>
<th>pSymB</th>
<th>Genome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (bp)</td>
<td>3,654,135</td>
<td>1,354,226</td>
<td>1,683,333</td>
<td>6,691,694</td>
</tr>
<tr>
<td>G + C ratio</td>
<td>62.7%</td>
<td>60.4%</td>
<td>62.4%</td>
<td>62.1%</td>
</tr>
<tr>
<td>Protein-coding regions</td>
<td>85.8%</td>
<td>83.2%</td>
<td>88.6%</td>
<td>85.9%</td>
</tr>
<tr>
<td>Transfer RNAs</td>
<td>51%</td>
<td>2</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>tmRNA*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ribosomal RNA operons</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Protein-coding genes</td>
<td>3341</td>
<td>1293</td>
<td>1570</td>
<td>6204</td>
</tr>
<tr>
<td>Average length of protein-coding genes (bp)</td>
<td>938</td>
<td>871</td>
<td>950</td>
<td>927</td>
</tr>
<tr>
<td>Genes with functional assignment</td>
<td>59%</td>
<td>56.5%</td>
<td>64.4%</td>
<td>59.7%</td>
</tr>
<tr>
<td>Orphan genes (% of total protein-coding genes)</td>
<td>5%</td>
<td>11.5%</td>
<td>12.3</td>
<td>8.2%</td>
</tr>
<tr>
<td>Regulatory genes (% of total protein-coding genes)</td>
<td>7.2%</td>
<td>10.4%</td>
<td>10.5%</td>
<td>8.7%</td>
</tr>
<tr>
<td>Insertional and phage sequences (% of replicon size)</td>
<td>2.2%</td>
<td>3.6%</td>
<td>0.9%</td>
<td>2.2%</td>
</tr>
<tr>
<td>RIME elements</td>
<td>185</td>
<td>6</td>
<td>27</td>
<td>218</td>
</tr>
<tr>
<td>Palindromes A, B, and C</td>
<td>253</td>
<td>0</td>
<td>5</td>
<td>258</td>
</tr>
</tbody>
</table>

*tmRNA derives its name from the presence of two separate domains, one that functions as a tRNA, and another that serves as an mRNA.
tems (8). Thus, pSymB plays a prominent role in importing small molecules. Rht transporters (hydroxylated amino acid efflux proteins) are unexpectedly abundant (12 members) in _S. meliloti_. No phosphoenolpyruvate sugar phosphotransferase (PTS) transport system was found, implying that sugars are transported and subsequently phosphorylated by cytoplasmic sugar kinases that are encoded by the chromosone and pSymB.

Regulatory proteins. Regulatory genes make up a substantial fraction (8.7%) of the _S. meliloti_ genome, especially the megaplasmids (Table 1). The LysR family (86 members) predominates, particularly on pSymA (Fig. 2). GntR regulators are more frequently found on megaplasmids, whereas the AsnC family is more common on the chromosome. Thus, each replicon has a distinct regulatory gene profile.

With only seven members, σ54-dependent transcriptional regulators constitute a small family in _S. meliloti_. A single “quorum-sensing” system (SCMc00168, SCMC00170) was found. We identified 36 response regulators and 37 histidine kinases, but no serine-threonine kinases. Thus far, _S. meliloti_ encodes the most nucleotide cyclases (26 members) of any bacterial genome [see (7) for a detailed analysis]. We identified 14 putative RNA polymerase sigma factor genes, most belonging to the extracytoplasmic function (ECF) subfamily. Similarly to _Caulobacter crescentus_ (13) and _M. loti_ (3), _S. meliloti_ lacks a rpoS.

Bacterial adhesion and surface structural elements. How rhizobia adhere to plant root hairs is poorly understood. We identified one putative adhesin (SMc01708), two agglutinin-like genes (SCMC00638 and SCMC00639), and an ABC transporter (SCMa0950 to SCMa0953) resembling the attA1A2BC attachment genes of _A. tumefaciens_ (16). Two previously unknown pilus were postulated: a type T pilus system similar to the virB-encoded type IV system of _Agrobacterium_ [see (6)], and one strikingly similar to the _Caulobacter crescentus_ pilus (17), encoded by two sets of homologous genes (pilA/cpa) located on the chromosome and pSymA. _Sinorhizobium meliloti_ lacks a type III secretion system, unlike _Rhizobium NGR234_ (4), _M. loti_ (3), and _B. japonicum_ (5). Therefore, use of type III secretion systems to infect plant cells is not a universal strategy among rhizobia and instead may play a role in host-specificity (18).

Sinorhizobium meliloti surface polysaccharides, including exopolysaccharides (EPSs), lipopolysaccharides (LPSs), capsular polysaccharides (CPSs), and cyclic β-glucans, encoded mainly by the chromosome and pSymB, are crucial for successful plant infection, possibly by suppressing plant defense responses (19). As many as 12% of pSymB genes may be involved in polysaccharide biosynthesis. We identified two new loci on the chromosome (7) and nine on pSymB (8). It will be interesting to find out the roles that these surface modification genes play in the interaction between the bacterium, the plants with which it comes in contact, and different soil environments.

Nodulation. In _S. meliloti_, nodulation genes required for the synthesis and export of Nod factors are located on pSymA. Our analysis sheds new light on the possible origin of these genes in _S. meliloti_.

We found two highly conserved duplications of _nod_ genes in the genome (Fig. 1). _nodM_ is 99% identical at the nucleotide sequence level to _glmS_, encoding D-glucosamine synthetase, which suggests that _nodM_ emerged recently from duplication of the housekeeping chromosomal _glmS_. Each megaplasmid carries a copy of _nodPQ_, which is 99% conserved at the nucleotide level (9) and is involved in the activation of sulfate to 3′-phosphoadenosine 5′-phosphosulfate for sulfation of Nod factors in _S. meliloti_. Vestiges of an IS element next to the pSymA copy of _nodPQ_ (20) suggest that this copy arose from transposition of an ancestral pSymB copy. In addition to these duplications, we discovered that _nodG_ is a paralog of the housekeeping chromosomal _fabG_. Overall, sequence analysis suggests that the _S. meliloti_ nod genes have two distinct origins: horizontal gene transfer, mediated by import of pSymA from an unknown bacterium, and resident gene duplication.

Nitrogen fixation and nitrogen metabolism. Nitrogen metabolism is a prominent feature encoded by the _S. meliloti_ genome, particularly pSymA. Whereas nitrogenase synthesis and activity require up to 20 _nif_ genes in _Klebsiella pneumoniae_, only nine _nif_ genes are found in the _S. meliloti_ genome (nifA, nifB, nifHDK, nifX, nifN, and nifS). Except for a likely _nifS_ ortholog on the chromosome and a possible _nifV_ gene (SCMC02546), all of these genes are located on pSymA. Although _nifQ_, _nifZ_, and _nifW_ are found in _Rhizobium_ sp. NGR234 (4) and _M. loti_ (3), no homologs were found in _S. meliloti_.

Fig. 3. Comparison of _M. loti_ and _S. meliloti_ predicted proteins. The _M. loti_ genome from bp 1 to 7 Mb is distributed along the x axis. In any given window along the x axis, the proportion within that window that has a significant match [see (27)] in the _S. meliloti_ genome is displayed, and the color indicates the location of the match: blue for pSymA, yellow for pSymB, and green for the chromosome. White represents the proportion that has no global match to _S. meliloti_. Arrows indicate the _M. loti_ symbiotic island.
Besides nitrogen fixation genes, pSymA carries glutamate dehydrogenase (gdhA), a full subset of genes necessary for denitrification (nos, nor, and nap), and nitrate transport genes. The chromosome bears the known nitRD, glnB, glnA, and glnT genes; an alanine dehydrogenase (ald); the ammonium transporter amit; the regulatory proteins nirXY, glnE, glnK, and glnD; the GOAT glutamate synthase system gltBD; and three previously unknown glutamine synthetase homologs. pSymB encodes a nitrate reductase (narB), two nitrate transporters (narT, 5M6b20436), and a single glutamine synthetase glnT.

Energy metabolism in relation to symbiosis. Sinorhizobium meliloti is an aerobic bacterium that must generate high levels of energy to support nitrogen fixation in the low-oxygen environment of the nodule. A previously characterized cytochrome c oxidase of the cbb3 type with high affinity for oxygen is encoded by two sets of duplicated fixNOPQ genes on pSymA. Analysis revealed an additional, less-conserved copy of the fixNOPQ cluster. Both pSymA and the chromosome carry a large NADH-ubiquinone dehydrogenase gene cluster that may enhance energy metabolism in symbiosis, possibly along with the fixNOPQ-encoded cbb3 oxidase. pSymA also encodes two formate dehydrogenases (6).

Comparison of the S. meliloti genome to other rhizobial genomes. We compared (21) the predicted protein content of the S. meliloti genome with that of the recently sequenced M. loti genome (Fig. 3). Several conclusions emerged from this comparison: (i) Thirty-five percent of M. loti genes have no ortholog in S. meliloti; (ii) the genetic information carried by pSymA or pSymB in S. meliloti is dispersed in the M. loti genome; (iii) the M. loti MAFF303099 symbiotic island contains, besides nodulation and nitrogen fixation genes, genes that have no ortholog in the S. meliloti genome. Similarly, a high proportion (54%) of the 536-kb Rhizobium sp. NGR234 symbiotic plasmid genes have no ortholog in S. meliloti and those which do are distributed over the three S. meliloti replicons (see figure on Web site (2)). Altogether these observations indicate that rhizobia, despite their taxonomic relatedness and symbiotic habit, differ significantly in gene content and organization. It is not known whether different isolates of a particular species will likewise show a high degree of genetic diversity. Further work will be needed to determine whether conserved and varying genes relate to adaptations for particular plant rhizospheres, for other environmental conditions, or for other adaptations not yet defined.

Conclusion and Perspectives

Determination of the S. meliloti 1021 genome sequence shows that it has a composite architecture, consisting of three replicons with distinctive structural and functional features. We interpret this as a consequence of its recent emergence. Both structural and gene function analyses are consistent with the hypothesis that the two megaplasmids were acquired separately by an ancestor whose genome consisted of a single chromosome. pSymA was acquired more recently, in evolutionary terms, as indicated by its distinctive GC% and codon usage, its paucity of Rhizobium-specific intergenic mosaic elements (RIMEs) and ABC elements, and the specificity of its IS content. pSymB acquisition probably preceded that of pSymA or may have resulted from a chromosomal excision event. However, distinct features of pSymB, including gene specialization, low abundance of IS elements, and a high proportion of orphan genes (Table 1), argue against a chromosomal origin for pSymB.

It is tempting to speculate how acquisition of the megaplasmids by the ancestral rhizobium widened its metabolic capacities and environmental adaptability. The chromosome of S. meliloti is that of a typical aerobic, heterotrophic bacterium. Acquisition of pSymB considerably extended the metabolic capabilities of the microbe by allowing it to metabolize a large variety of small compounds encountered in the soil or in the plant rhizosphere. An increased capacity in synthesizing polysaccharides may also have significantly improved the colonization potential of these microbes. Finally, acquisition of pSymA led to the emergence of nodulation, as well as the bacterium’s capacity to colonize the low-oxygen environment of the nodule. pSymA also expanded the capacity to metabolize nitrogen compounds under a variety of chemical forms, including molecular dinitrogen. Such speculation may offer new perspectives for microbial evolution and for identifying the origins of the rhizobium-legume symbiosis. The complete S. meliloti genome sequence and its detailed annotation creates opportunities for an expanded analysis of symbiotic nitrogen fixation by allowing researchers to focus on specific metabolic and regulatory circuits. Functional analyses of the S. meliloti genome will lead to further insights in understanding this and other rhizobium-legume symbioses.

References and Notes

1. Sequence accession numbers: chromosome AL591688 (EMBL, CON entry); pSymA accession AE000469 (GenBank); pSymB accession number AL591985 (EMBL).

2. Annotation, tools, and supplementary data are available at http://sequence.toulouse.inra.fr/me-
liloti.html.

3. T. Kaneko et al., DNA Res. 7, 331 (2000).

12. Genes are considered paralogs if their products match over more than 80% of their length with more than 30% amino acid sequence identity.

19. V. Viprey, X. Perret, W. J. Broughton, Subcell. Bio-
chem. 33, 437 (2000).

21. BlastP comparisons of the M. loti and S. meliloti proteins were run using the following parameters: expect value threshold = 0.1; gap opening penalty = 9; gap extension penalty = 2. Genes are considered possible orthologs if they match over 80% of either the query or subject protein length with an expect of less than 1e-6.

22. We are grateful to Thomas Schliex [Biomettrie et Intelligence artificielle, Institut National de la Recherche Agronomique (INRA), Toulouse, France] for the Frame D program. D.C. was supported by a CNRS (BDI) doctoral fellowship and E.K. by an INRA postdoctoral fellowship. We also thank Lion Bioscience AG (Heidelberg, Germany) and IIT Biotech GmbH (Bielefeld, Germany) for their participation. This work has been supported by grants from the European Union (MELLO BiCH-CT98-0109) to F.G., A.P., A.G., D.P., T.P., and J.B., the Natural Sciences and Engineering Research Council of Canada (NSERC) Research, Strategic and Genomics to T.M.F. and B.G., the Bundesministerium für For-
schung und Technologie (0311752) to A.P., the CNRS (Genome Research Program) and INRA (API98/PO0206) to F.G. and J.B., the U.S. Depart-
ment of Energy, Energy Biosciences Program (DE-
FG03-90ER20101) to S.R.L. and [DE-FG03-99ER20225] to M.K.; and the U.S. NIH (GM30962) and the Howard Hughes Medical Institute to S.R.L.

30 May 2001; accepted 5 June 2001
You have printed the following article:

The Composite Genome of the Legume Symbiont Sinorhizobium meliloti
Francis Galibert; Turlough M. Finan; Sharon R. Long; Alfred Pühler; Frédéric Ampe; Frédérique Barloy-Hubler; Melanie J. Barnett; Anke Becker; Pierre Boistard; Gordana Bothe; Marc Boutry; Leah Bowser; Jens Buhrmester; Edouard Cadieu; Delphine Capela; Patrick Chain; Alison Cowie; Ronald W. Davis; Nancy A. Federspiel; Robert F. Fisher; Stéphanie Gloux; Thérèse Godrie; André Goffeau; Brian Golding; Jérôme Gouzy; Mani Gurjal; Ismael Hernandez-Lucas; Andrea Hong; Lucas Huizar; Richard W. Hyman; Ted Jones; Daniel Kahn; Michael L. Kahn; Sue Kalman; David H. Keating; Ernö Kiss; Caridad Komp; Valérie Lelaure; David Masuy; Curtis Palm; Melicent C. Peck; Thomas M Pohl; Daniel Portetelle; Bénédicte Purnelle; Uwe Ramsperger; Raymond Surzycki; Patricia Thébault; Micheline Vandenbol; Frank-J. Vorhölt; Stefan Weidner; Derek H. Wells; Kim Wong; Kuo-Chen Yeh; Jacques Batut

Stable URL:
http://links.jstor.org/sici?sici=0036-8075%2820010727%293%3A293%3C668%3ATCGOTL%3E2.0.CO%3B2-D

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References and Notes

15 Complete Genome Sequence of Caulobacter crescentus
William C. Nierman; Tamara V. Feldblyum; Michael T. Laub; Ian T. Paulsen; Karen E. Nelson; Jonathan Eisen; John F. Heidelberg; M. R. K. Alley; Noriko Ohta; Janine R. Maddock; Isabel Potocka; William C. Nelson; Austin Newton; Craig Stephens; Nikhil D. Phadke; Bert Ely; Robert T. DeBoy; Robert J. Dodson; A. Scott Durkin; Michelle L. Gwinn; Daniel H. Haft; James F. Kolonay; John Smit; M. B. Craven; Hoda Khouri; Jyoti Shetty; Kristi Berry; Teresa Utterback; Kevin Tran; Alex Wolf; Jessica Vamathevan; Maria Ermolaeva; Owen White; Steven L. Salzberg; J. Craig Venter; Lucy Shapiro; Claire M. Fraser

Stable URL:
http://links.jstor.org/sici?sici=0027-8424%2820010327%2998%3A7%3C4136%3ACGSOCC%3E2.0.CO%3B2-0

NOTE: The reference numbering from the original has been maintained in this citation list.