

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO LICENCIATURA EN CIENCIAS GENÓMICAS

PROGRAMA DE ASIGNATURA

CLAVE	NOMBRE DE LA ASIGNATURA			SEMESTRE	
	SEMINARIO 1			PRIMERO	
MODALIDAD	CARÁCTER	HORAS SEMESTRE	TEÓF	RA/SEMANA CRÉDITO EÓRICAS RÁCTICAS	
SEMINARIO	OBLIGATORIA	80	3	2	8
NIVEL		BÁSICO			
TIPO			TEÓRICO-I	PRÁCTICA	

OBJETIVO: Que el alumno conozca y sepa utilizar diferentes recursos bioinformáticos que le permitan resolver aquellos problemas más frecuentes en las ciencias genómicas; que conozca las bases de datos y herramientas más importantes y de uso más frecuente, así como la información que puede obtener de cada una de ellas y cómo interpretarla; además, que descubra las aplicaciones de la bioinformática, sus métodos, alcances y limitaciones, en distintas áreas de estudio de las ciencias genómicas.

Número de Horas:	Contenidos temáticos:		
5	1. Introducción a la Bioinformática		
5	2. Bases de datos 1 (Nucleótidos)		
	2.1 Tipos de Secuencias.		
	2.2 Formato FASTA .		
	2.3 Código de letras de secuencias nucleotídicas.		
	2.4 Bases de datos de nucleótidos.		
	3. Bases de datos 2 (Proteínas)		
5	3.1 Secuencias de proteínas y código de aminoácidos.		
	3.2 Secuencias traducidas nucleótidos → proteínas.		
	3.3 SWISS Prot y Protein de NCBI.		
	4. Bases de datos 3		
5	4.1 Búsqueda de bibliografía científica: PubMed, Books, etc.		
	4.2 Otros recursos de NCBI (Entrez, Gene, OMIM).		
	4.3 Genome Browsers (NCBI Map View, Ensembl, UCSC Genome		
	Browser).		
5	5. Bases de datos 4		
	5.1 The Glycan Structure DB.		
	5.2 The Lipid Bank.		
	5.3 Expasy, Brenda.		
	5.4 KEGG, MetaCyc.		
5	6. Minería de textos y datos		
5	7. Homología y alineamientos 1		
	7.1 Noción biológica y teórica de homología.		
	7.2 Conceptos de homología.		
_	7.3 Alineamientos globales y locales.		
5	8. Homología y alineamientos 2 (BLAST)		
	8.1 Qué es BLAST y cómo interpretar un BLAST (valores de BLAST).		
	8.2 Diferentes tipos de BLAST.		
	8.3 Otros programas tipo BLAST. 8.4 Bidirectional Best Hit.		
	9. Homología y alineamientos 3		

F	0.4 December sprice file genétics		
5	9.1 Reconstrucción filogenética.		
	9.2 Alineamientos múltiples.		
5	9.3 Árboles filogenéticos.		
5	10. Anotación de genomas de procariotes		
5	11. Anotación de genomas de eucariotes		
	12. Conservación de secuencias		
	12.1 Sintenias.		
5	12.2 Motivos.		
	13. Modelado de macromoléculas		
	13.1 Predicción de estructura secundaria de RNAs.		
5	13.2 Predicción y modelado de estructuras tridimensionales de proteína		
	14. Recursos de Genómica Funcional		
	14.1 Análisis de microarreglos.		
5	14.2 Proteómica.		
5	15. Introducción a las redes y la biología de sistemas		
	16. Presentación de proyectos		
80	Total de Horas		

BIBLIOGRAFÍA BÁSICA:

• Claverie, J.M. and Notredame, C.; *Bioinformatics for Dummies*; Wiley Publishing Group.

BIBLIOGRAFÍA COMPLEMENTARIA:

• Malcom Campbell & Laurie J. Heyer.; Genomics, Proteomics, & Bioinformatics; CSHL Press.

SUGERENCIAS DIDÁCTICAS:

Exposición de los temas por parte del profesor con la participación activa de los alumnos. Prácticas en clase dirigidas por el profesor.

SUGERENCIAS DE EVALUACIÓN:

Reportes de las prácticas realizadas en clase y tareas.

Trabajo final escrito.

Presentación oral del trabajo final.

PERFIL PROFESIOGRÁFICO:

Licenciado(a) en Ciencias Genómicas.